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1. INTRODUCTION 

MATERIALS processing in space, such as crystal growth, may 
be sometimes disturbed by residual accelerations, or g-jitters, 
which act on the space carrier: atmospheric drag, gravity 
gradient effect, vibrations, crew activities, etc. Because of the 
presence of thermal gradients (and thus of density gradients) 
in the liquid phase of the experiment these residual acccl- 
erations may give rise to convective motions ; in turn, these 
convective flows may act on the solute field and lead to 
heterogeneities of dopant in the grown crystal. Thus it is 
important to be able to predict the possible influence of g- 
jitters on solidification experiments, and to forecast whether 
or not they may lead to a lower quality of space-grown 
crystals. 

With this aim, this note will be devoted to g-jitter con- 
vection in an ideal crystal growth configuration. A second 
paper (to be published) will be devoted to the influence of ,q- 
jitter convection on the distribution of solute (or dopant) in 
the liquid phase. Here we shall assume that the liquid alloy 
is dilute enough to enable a separate computation of vel- 
ocity and solute fields (no solutal convection). The crystal 
growth experiment is modelled by a hidimensional, rect- 
angular cavity (Fig. I), with end walls held at temperatures 
T,,-AT/2 and T,+AT/2, and totally filled with a New- 
tonian, low Prandtl number liquid at mean temperature To ; 
side walls are adiabatic and all surfaces are rigid no-slip 
boundaries. We shall study convective flows induced by g- 
jitters transverse to the thermal gradient ; we chose this orien- 
tation of the g-jitters because it is the most ‘critical’, i.e. there 
is no threshold for the onset of convection as there would be 
in a ‘Rayleigh-BCnard’ configuration. The pioneering work 

FIG. 1. Configuration and notations 

in this field is that of Dressier [I], who studied the response of 
the system to a step of gravity. Our method will be somewhat 
different from his. We shall consider the effect of a single 
fluctuation of gravity, defined as 

with ,f the frequency of the g-jitter and i’ = - I (we use 
complex notations for periodic phenomena). We look for 
non-dimensional velocities and streamfunctions in the form 

v = v(x,_v) eZlnr, $ = $(x,y) e”“’ 

where v(x, y) and $(.x, y) are complex to take possible 
phase shifts between the gravity fluctuation and the flow into 
account. The non-dimensional equations of the problem are 
therefore 

v.v =o 

V A (2irr Fqv-V’v-Grxj) = 0 

with the boundary conditions 

(1) 

(2) 

v = 0 at x = i AZ/~, y = + l/2. (3) 

The symbols in equations (l)-(3) are defined in the 
Nomenclature: Gr is the classical Grashof number based 
on the gradient and F9 a non-dimensional frequency. We 
assumed that the fluid is Boussinesq-incompressible and we 
neglected, as it is usual to do for low Grashof numbers, the 
(v=V)v term in front of V2v in equation (2). Another 
approximation lies in the assumption, valid for low-Prandtl- 
number fluids, that the longitudinal temperature field in the 
cavity is nearly diffusive, consequently leading in the Gr .X 
term in equation (2). 

Setting v = V A $ we also obtain the streamfunction for- 
mulation of the problem 

2ix F9 V’I/J = V”$ - Gr (4) 

with the boundary conditions 

$ = g = $ = 0 for Y = + AZ/~, J: = + l/2. (5) 

We first give an exact analytical solution of this problem in 
the case of an infinite cavity (Section 2.1). and approximate 
this solution to the case of a rectangular cavity of finite length 
(Section 2.2). Then we compare this solution with numerical 
(time-dependent, finite difference) computations (Section 3). 
In the last part of this work we shall briefly show how to 
extend the previous results to cylindrical configurations and 
how to calculate the response of the fluid to a super- 
imposition of several mono-frequency q-jitters. 



2168 Technical Notes 

i j 
L 

T,, 
AT 

V 

>, Y 
.X. 1’ 

NOMENCLATURE 

frequency of the g-jitter 
gravity level or amplitude of the g-jitter 

(ground : sd 
gravity vector 
thermal gradient, ATiL 
height of the cavity 

Greek symbols 
G( thermal diffusivity coefficient of the liquid 

B coefficient of thermal expansion of the liquid 
\’ kinematic viscosity of the liquid 
5 non-dimensional time 

* streamfunction. 
complex number, v! - I 
reference vectors (see Fig. I) 
length of the cavity 
time 
average temperature in the liquid 
temperature difference between the ends of 
the cavity 
velocity vector of the Huid 
non-dimensional velocity vector 
coordinates 
non-dimensional coordinates. 

Non-dimensional parameters 
AZ aspect ratio of the cavity, L/H 

Fq non-dimensional frequency, fH’/r 
Gr Grashof number based on the gradient 

,9,!I!$H4!v’ 
Pr Prandtl number, v/cc 
Re Reynolds number: maximum of Iv/. 

Miscellaneous symbols 
V Nabla operator, ((‘;Z.u. C:/ij,) 
A dot product. 

2. ANALYTICAL SOLUTIONS Reynolds number Re as a function of Fq). For the low values 
^ .^ 

2.1. g-Jitler convection in an injnite cavity 
If we let AZ --t + c~i in equations (l)-(3) and if we hold 

meanwhile the thermal gradient constant, the problem 
becomes that of a bidimensional, infinite layer of fluid subject 
to a constant longitudinal thermal gradient and to a fluc- 
tuating gravity g normal to the layer. The reader can easily 
check that there is no solurion wifh v = 0: the layer of 
fluid cannot stay at rest. This is the reason why the gravity 
perturbations transverse to the thermal gradient are always 
very critical, since the slightest fluctuation of the gravity is 
able to put the fluid into motion (no ‘threshold’). The solu- 
tion in the steady state is well known and given by Birikh’s 
[2] or Hart’s [3] formula 

of Fq, the maximum veloctty IS nearby the one tound tor the 
steady convection (see equation (6), Birikh/Hart profile). 
For the high values of Fq, the velocity decreases and behaves 
like l/F9 ; this result was already mentioned by several 
authors, including Monti er al. [4]; Griffin and Motakef 
mention a similar result in a ‘vertical’ configuration [5]. The 
transition occurs near log (Fq) = 0.8, that is, Fq = 6. 

kGry(y-6)(y+A) 
v= 

0 (6) 

The corresponding streamfunction is given straightforwardly 
by an integration 

In the case of a fluctuating gravity the solution is also quite 
easy to find 

i 

sinh (,,/(2ni Fq)?‘) 2y- ~__ _.- 
smh (J (2m Fq)/2) (8) 

or when using the streamfunction 

where h is a complex function defined as 

cash (j(2rri F9)z) -cash (J(2xi Fq)/Z) I x _.~_______ 
sinh (,,/(Zni F9)/2) 4 

>. (10) 

2.1.1, Analysis of’the velocityfields in an infinite cavity. The 
above solution shows some characteristic and noteworthy 
features that we shall outline below. 

(I) Maximum velocity. Figure 2(a) shows the maximum 
velocity, as given by equation (8), as a function of the fre- 
quency of the q-jitter (with non-dimensional numbers : the 

(2) Velocity prqjile. Figure 2(b) gives the profile of the 
velocity field inside the cavity, Iv] divided by its maximum 
value, for various values of the frequency. At low frequencies 
the profile is similar to Birikh’s one (see Fig. 6). For Fy >> 10 
the maximum of the profile comes closer to the walls of the 
cavity. Without making any rigorous demonstration, this 
fact may be explained as follows : let Fy + + CC in equation 

(4) 

2in Fq V’$ = V411,-Gr 

then q? tends towards the solution of 

(4) 

2in Fq V’$ = -Gr (11) 

because I$max] behaves like IiFq and thus the V’$ term 
becomes ‘negligible’ in front of the other terms. The solution 
of equation (I I) with the boundary conditions $ = 0 for 
j‘ = f l/2 is 

or in terms of velocity 

But two orders of derivation are lost between equations (4) 
and (I I) ; so two boundary conditions must be lost, that is 
the two conditions 

which are not fulfilled by the asymptotic solution (12). Thus 
there must be a ‘boundary layer’ which matches the asymp- 
totic solution with the boundary condition (14) near 
J = + l/2. This is what Fig. 2(b) shows: when Fq --t + 8;~. 
the velocity profile tends towards the linear profile defined 
by equation (13) except near the walls where the profile is 
coupled with the no-slip condition at the walls. 
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FIG. 2. Velocity field in a cavity of infinite length, for various values of the non-dimensional frequency Fy : 
(a) maximum velocity in the cavity vs Fq ; (b) velocity profile in the cavity, for Fq ranging from 1 to 1000 ; 
(c) phase shift between gravity and fluid velocity, for Fq ranging from 1 to 10000; (d) phase shift on the 

walls and at the centre of the cavity vs Fq. 

(3) Phase shift. Figure 2(c) shows the phase shift between 
$ and the excitation g e”““, as a function of the position y in 
the cavity and of the non-dimensional frequency Fq. For low 
frequencies, the fluid ‘follows’ the fluctuation of the gravity, 
in phase; at high frequencies the centre of the fluid layer 
responds with a lag of -n/2. This is not surprising since this 
was also shown by the asymptotic solution (13); it means 
that the fluid phase behaves like a dynamic system with low 
damping. The phase shift is always maximum in the centre 
of the cavity and minimum at the walls; it tends towards 
-n/4 at the walls for high frequencies. Figure 2(d) shows 
the evolution of minimum/maximum phase shifts as a func- 
tion of frequency. 

2.2. g-Jitter convection in a rectangular cavity 
The case of the rectangular cavity is a little bit more diffi- 

cult. The main reason is that there is no exact analytical 
solution to the simplified system (l)-(3) or (4) and (5), even 
in the steady case. An approximate solution at Fq = 0 is 
given by Batchelor’s formula [6] 

(15) 
The corresponding velocity profile is cubic for both y and x, 
and is antisymmetrical with respect to the centre of the cavity. 

Please note that Batchelor’s solution is not exact. Batchelor 

in his article refers to Love, A Treatise on the Mathemulicul 
Theory of Elasticity (Cambridge University Press, 1927), 
Chap. 22, who explains that the solution 

‘I was given long ago by Grashof. the formula. fhough 
devoid of theoretical foundation, has often been treated 
with respect”. 

The exact solution may be calculated by an infinite series, the 
coefficients of which are themselves solutions of an infinite 
system of equations. The fact that Batchelor’s solution has 
no theoretical justification should not be considered as criti- 
cal. This solution agrees quite well with more precise com- 
putations for a square cavity and describes with reasonable 
agreement the flows for aspect ratios up to 2; and at last, 
$(O, J3 tends towards the exact solution of Birikh when AZ 
becomes infinite. Therefore, we shall use Batchelor’s for- 
mulae hereafter for aspect ratios (AZ) up to 2. In the case of 
the fluctuating gravity we shall look for an approximafe 
solution similar to Batchelor’s one, and therefore assume the 
following hypotheses : 

(1) $ may be written as $(x,y) = ~$(.x/Az)*4(y); 
(2) when the frequency tends towards 0, 11, should tend 

towards Batchelor’s solution ; 
(3) when the aspect ratio becomes infinite, $(O, 4‘) should 

tend towards the ‘infinite cavity’ solution of Section 3.1. 

Hypothesis (1) is reasonable, first because equation (4) is 
symmetrical in x and y. and also because the approximate 
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solution in the steady state (Batcheior’s solution) also shares 
this feature. Hypothesis (2) is really obvious and hypothesis 
(3) is also a reasonable condition, which is also fulfilled by 
Batchelor’s solution. 

Hypotheses (l))(3) lead directly to the form of $ 

where /I is the function defined before (formula (10)) 

cash (&2ni Fy)r) -cash (J(3rti F4):2) 1 x ~~~~~ ~. 
sinh (k/(?ni Fy)lZ) ~~-- 1 4 

This solution is thought to be valid in the same conditions 
as Batchelor’s one, i.e. for aspect ratios up to 2. The prop- 
erties of $ proceed from those studied in Section 2.1 for 
the infinite cavity. For low frequencies (Fc7 ---) 0) we tind 
Batchelor’s solution again (by hypothesis) and no phase shift 
between $ and 9 e2”‘. At high frequencies (FLY + + J;) tj 
tends towards 

* .I\b’lV”r = 4n Fy ( , + ,‘p) ,‘p 
‘.GI;__L_iy’ _:)(~~_a,) 

which means a linear velocity profile, except near the walls 
(boundary layer, as before). The phase shift between $ and 
n is 0 in the corners of the cavity and is maximum in the 
centre. it tends towards -n/2 in the centre when the fre- 
quency becomes infinite and towards -n:4 at the centre of 
the walls. 

2.3. Thr extended rertanqutar cwiiy with,flwtuntinq grucit~ 

We still have to pay attention to the case between the 
infinite cavity (Section 2.1) and the rectangular cavity of 
aspect ratio less than 2 (Section 2.2). A paper by Cormack 
et (11. is devoted to this problem in the case of steady con- 
vection [7]. They suggest to study separately the flow in the 
centre of the cavity, represented by a streamfunction $,,,,, 
and the flow in the ends, $.nd. with an asymptotic matching 
condition. They find that the matching between both solu- 
tions occurs at a distance I from the ends, that is. the .~~~~~~7 
e~tcnf on u+ricir ltte ei3c7.s hrtL,i? UA in~~u~n~l~ is eyud to the 

/w(qht q/ the curity. This suggests a very simple (though not 
completely correct) way to calculate the flows in cavities of 
aspect ratio greater than 2. The cavity is divided into a central 
region, where the flow is described by the streamfunction (9). 
and two end regions where the flow is described by formulae 
like (16). written for halfcavities of aspect ratio 2 centred at 
.X = A:/2 - I and - ilr;Z + 1. The matching of both solutions 
occurs obviously at a distance 1 from the ends. We shall see 
an example of this in the next section where we compare the 
analytical formulae with a numerical computation in thecase 
of a cavity of aspect ratio 4. 

3. NUMERICAL STUDY 

A numerical study of the basic equations (with low but 
non-zero Prandtl number and without neglecting the quad- 
ratic term in equation (2)) was performed, in order to check 
the accuracy of the analytical solutions of the previous 
section. A cavity of aspect ratio 4 was chosen for the numeri- 
cal computations. This aspect ratio is a good compromise; 
it is not too long. so big meshes and computing cost are 
avoided. but it is long enough to enable two kinds of flows 
to coexist : a ror~_jhv similar to the flow in an infinite cavity. 
and an ctzri,fl</~~ near the ends. Thus each calculation gives a 
maximum of information. 

3. I, Lk.vcription of’the numericul method 
Here we shall give an overview of the numerical method 

u<cd The governing equations are now expressed in vor- 

ticity-streamfunction formulation. Then the equations are 
discretized by using a time-and-space finite difference scheme 
based on an AD1 (alternating direction implicit) technique. 

For space derivatives, we used a Hermitian method m 
which the variables and their lirst and second derivatives are 
taken as unknowns. The Hermitian relations used to close 
the system are those given in ref. [8] and obtained from a 
Taylor series expansion. This results in a 3 x 3 block-tri- 
diagonal system which is solved with an efficient Thomas 
algorithm. To solve the vorticity equation. the requested 
values of the wall vorticity are obtained by explicit evaluation 
of the streamfunction equation at the wall, by considering a 
Hermitian relation of fourth-order accuracy 

where $ is the streamfunction, ; the vorticity and n the 
normal to the boundary. For a stiff problem the algorithm 
involves internal iterations at two levels. The first one con- 
cerns the streamfunction equation and the second the bound- 
ary conditions for the vorticity transport equation. For more 
information about the technique used the reader can refer 
to refs. [9. IO]. A variable 81 x 21 grid generated by the 
Thompson method [ 11) was used with grid points much more 
clustered near the walls to better see the displacement of the 
velocity profile at high frequencies. The Prandtl number for 
all computations was set equal to 0.015 (liquid tin) and 
the Grashof number to Gr = IO. All the computations were 
performed on a Gray 2 computer. 

Two kinds of problems were encountered : 

(I) The numerical scheme is stable only if the time step 
remains lower than a given value (which depends on the space 
step}. This turned out to be problematic at 7~~,~~qiiftz(.i~,.s, 
because the number of time steps necessary to go through a 
period of the s-jitter becomes too important. 

(2) The computations were carried out by decreasing frc- 
quencies : the starting state of the computation for a given 
frequency was the final state of the computation for the 
previous frequency. The problem with such a method is that 
there is a transient regime at the ~ginning of the com- 
putation: at high #~~fiu~~n~~~~.\. the number of iterations to 
reach the permanent regime was too long. When we started 
the numerical work we did not know the analytical solutions 
(9) and (16). A better way to speed up the computation 
would have been to take these solutions as starting points 
for the computations. 

Finally flows were computed for the following non-dimen- 
sional frequencies : Fq = O._, 3 1.3.33,10.33.3,100,333, lo#O, 
i 0 000. 

(I) Maximum u&city. The maximum velocity is reached 
in the ‘core’ region of the cavity. Numerical results were 
s~lpe~mposed on Fig. 2(a). The points are very close to the 
analytical values found for an infinite cavity. 

(2) Velocity projife. Figure 3 gives the evolution of the 
velocity profiles on the medians of the cavity, as a function 
of frequency. They are compared with the profiles defined in 
Section 2.2. 

(a) In the core rc@n of the cavity. the profiles arc nearly 
exactly those we found an~i~~ticaily in the case of the infinite 
cavity. The little shift observed at Fq = IO’ is probably 
attributable to numerical problems (the computation is car- 
ried out near the limit of precision of the program). 

(b) Near the ends of the cavity the agreement is not so 
good. This was expected : the analytical solution, even for 
the steady state. is just an approximation. Nevertheless and 
qualitatively speaking, both results show the same charac- 
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F~ti. 3. Velocity profiles on the medians of a cavity of aspect 
ratio A: = 4. for frequencies ranging from 1 to 1000. Ana- 

lytical results (a) and numerical results (n). 

teristic features : displacement of the velocity profile near the 
walls at high frequencies, spatial extent of the end effects. 

(3) P/ruse .sh$~s. The analysis of the phase shifts gives rise 
to several difficulties. First it is very sensitive to numerical 
errors; afterwards, the limited number of iterations per step 
(about ten) does not enable a good accuracy on the phase 
shift; at last, for obvious reasons, it is not possible to com- 
pute the phase shift on the walls, where the velocity is equal 
to zero. Nevertheless, a reasonable agreement was found 
between analytical and numerical solutions. More specifi- 
cally, the increase of the phase shift with frequency was 
observed, with its --7[/2 limit in the centre of the cavity and 
its -n/4 limit on the medians. 

3.3. Conclusions 
The analytical formulae seem to give a reasonably good 

description of the flow in a rectangular cavity with longi- 
tudinal thermal gradient and transverse g-jitters. In the cen- 
tral part of extended cavities (AZ >> I) the flow is described 
nearly exactly by the ‘infinite cavity’ solution. End effects are 
perceptible up to a distance 1 from the ends, and analytical 
formulae give a good idea of the recirculation in the end 
regions. There is little effect of the aspect ratio except for 
AZ cc 2. The same kind of solution may be used for the 
recirculation in the ends of extended cavities and for the flow 
in short (AZ < 2) cavities. At last the behaviour of the fluid 
at very high frequencies is very interesting; except near the 
walls, the flow may be described by asymptotic expressions 
with a -71/2 phase shift. 

The good agreement between numerical results and ana- 
lytical formulae is a very encouraging point for a wide use 
of these formulae. For example, they may be used to get a 
first idea on the sensitivity of a given space experiment to 
residual accelerations. This is especially true for crystal 
growth experiments, for which the aspect ratio varies wrth 
time : the calculus is quite easy with the analytical formulae. 
whereas it would require a considerable amount of computer 
hours to get the corresponding numerical solutions. On the 
other hand, these analytical formulae may be very helpful in 
numerical works, as they may be used as starting solutions 
to speed up the convergence of numerical computations. 

4. DISCUSSION 

The extension of the solutions obtained for bidimensional, 
rectangular cavities to the case of cylindrical cavities may 
in some cases give rise to some problems. The flows in a 
bidimensional cavity and in the middle plane of a cylindrical 
cavity are often said to be similar; as long as the Grashof 
number is hot too high this is legitimate, but does not give 
indications on the flow in other parts of the cavity. Tri- 
dimensional effects may possibly occur, especially near the 
ends. Beside this fact, bidimensional models seem to over- 
estimate by one third the velocities inside cylindrical enclos- 
ures. On all these topics see the synthesis article by Bontoux 
et UI. [12]. 

To finish with it may be interesting to extend the results 
obtained in the case of a mono-frequency disturbance to 
‘real’ situations were several frequencies (and possibly an 
infinity of frequencies) add up. Equations (l)-(3) show a 
linear relation between the fluctuations of gravity and the 
velocity fields inside the cavity. Therefore, when gravity sums 
up several frequencies, we should expect that the velocity 
field inside the cavity to be the sum of all the velocity fields 
calculated separately for all frequencies. It must be stressed 
that this is true only if the hypotheses that led to the linear 
system (l)--(3) remain fulfilled: low Prandtl number, low 
Rayleigh number (and thus low Grdshof number). More 
specifically the conclusions about g-jitter convection have to 
be revised if the fluid is not a liquid metal, for example water 
or gas, or if the Grashof number is too high (greater than 
2000. for example). Please remember that the Grashof num- 
ber varies like the fourth power of the cavity’s height; for 
the growth of ‘industrial’ crystals (2”, 3”) in microgravity, 
the Grashof number may rapidly become too high to let the 
previous analysis be still valid. 

A practical application of this study is shown on Fig. 4. 
We consider here the space solidification of a @ I” Ge(Ga) 
crystal, with a thermal gradient. e.g. 50 K cm ’ ; the aspect 
ratio will be set equal to 4. The parameters of the experiment 
are summarized in Table I. 

The spectrum of the residual gravity considered here 
is shown on Fig. 4(a). It has an ‘infinity’ of frequencies (in 
fact 512, to enable the use of a Fast Fourier Transform alg- 
orithm) with a low-frequency characteristic component at 
1.85 x IOmJ Hz corresponding to the orbital period of the 
host spacecraft. about 90 mm. This situation may be en- 
countered aboard spacecraft like EURECA, which keep a 
constant orientation with respect to the sun and thus ‘rotates’ 
in a geocentric system of coordinates : the orientation of the 
residual gravity varies along the orbit with a period equal to 
the time of revolution. Figure 4(b) gives. as a function of 
time, the evolution of the velocity at point (0, - l/2G3). i.e. 

Table 1 
----- ----_____-.~.._~_._ 

H height cm 2.54 
c( thermal diffusivity cm* so ’ 0.21 
/I thermal expansion coefficient K ’ 9.48-05 
I’ kinematic viscosity cm’s_ ’ 1.4E-03 
?I thermal gradient Kcm-’ 50 
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FIG. 4. Test case: (a) gravity spectrum, with a low-frequency component at 10mhg,, ; (b) response of the 
fluid. 

where the steady component of the velocity is maximum. 
The calculus is achieved through formula (8) for each single 
frequency and an inverse Fourier transform is used to switch 
back to the time domain. It is clear on Fig. 4(b) that the fluid 
‘follows’ the characteristic low-frequency fluctuation of the 
residual gravity along the orbit, whereas higher frequencies 
are damped. This is in good agreement with what we already 
know : as shown on Fig. 2(a) the fluid behaves like a first- 
order system, with a cut-off frequency at Fq N 6 or dimen- 
sionally: j’= 1.3E-03 Hz. Thus, mainly those frequencies 
lower than that value will have a direct impact on the 
experiment. 

A second paper, to be published [13], will be devoted to 
the alterations of the solute field induced by the motion of 
the liquid during a crystal growth experiment. It will be 
shown whether the velocities, though very low (here some 
10 ~’ cm s- ‘) are liable or not to have an influence on crystal 
growth processes. 
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